首页> 外文会议>ASME turbo expo >ON THE NUMERICAL PREDICTION OF FINITE LENGTH SQUEEZE FILM DAMPERS PERFORMANCE WITH FREE AIR ENTRAINMENT
【24h】

ON THE NUMERICAL PREDICTION OF FINITE LENGTH SQUEEZE FILM DAMPERS PERFORMANCE WITH FREE AIR ENTRAINMENT

机译:自由进风的有限长度挤压膜阻尼器性能的数值预测

获取原文

摘要

Squeeze Film Dampers (SFDs) are commonly used in turbomachinery to dampen shaft vibrations in rotor-bearing systems. The main factor deterring the success of analytical models for the prediction of SFDs performance lays on the modeling of dynamic film rupture. Usually, the cavitation models developed for journal bearings are applied to SFDs. Yet, the characteristic motion of the SFD results in the entrapment of air into the oil film, producing a bubbly mixture that cannot be represented by these models. There is a need to identify and understand the parameters that affect air entrainment and subsequent formation of a bubbly air-oil mixture within the lubricant film. A previous model by Diaz and San Andres advanced estimation of the amount of film-entrapped air, based on a non-dimensional number that related both geometrical and operating parameters but limited to the short bearing approximation (i.e., neglecting circumferential flow). The present study extends their work to consider the effects of finite length-to-diameter ratios. This is achieved by means of a finite volume integration of the two-dimensional, Newtonian, compressible Reynolds equation combined with the effective mixture density and viscosity defined in the work of Diaz and San Andres. A flow balance at the open end of the film is devised to estimate the amount of air entrapped within the film. The results show, in dimensionless plots, a map of the amountof entrained air as a function of the Feed-Squeeze Flow Number, defined by Diaz and San Andres, and the Length-to-Diameter Ratio of the Damper. Entrained air is shown to decrease as the L/D ratio increases, going from the approximate solution of Diaz and San Andres for infinitely short SFDs down to no air entrainment for an infinite length SFD. The results of this research are of immediate engineering applicability. Furthermore, they represent a firm step to advance the understanding of the effects of air entrapment on the performance of SFDs.
机译:挤压膜阻尼器(SFD)通常用于涡轮机械中,以减轻转子轴承系统中的轴振动。决定分析模型成功用于SFD性能预测的主要因素在于动态薄膜破裂的建模。通常,为轴颈轴承开发的气穴模型适用于SFD。然而,SFD的特征运动会导致空气滞留在油膜中,产生气泡状的混合物,这些模型无法表示这些混合物。需要识别和理解影响空气夹带以及随后在润滑膜内形成气泡状的空气-油混合物的参数。 Diaz和San Andres的先前模型基于与几何参数和操作参数都相关但仅限于短轴承近似(即忽略周向流动)的无量纲数,来提前估计夹带薄膜的空气量。本研究扩展了他们的工作,以考虑有限的长径比的影响。这是通过二维牛顿可压缩雷诺方程的有限体积积分与Diaz和San Andres的工作中定义的有效混合物密度和粘度相结合来实现的。设计薄膜开口端的流量平衡,以估计残留在薄膜内的空气量。结果在无量纲图中显示了数量图 夹带空气的量随Diaz和San Andres定义的进料挤压流量值以及阻尼器的长径比的变化而变化。随着L / D比的增加,夹带的空气减少,从无限短SFD的Diaz和San Andres的近似解到无限长SFD的无夹带空气。这项研究的结果具有直接的工程适用性。此外,它们代表了坚定的一步,可以进一步了解空气滞留对SFD性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号