首页> 外文会议>World petroleum congress >CLIMATE CHANGE AND SEQUESTRATION OF CO2 INGEOLOGICAL MEDIA: A VIABLE OPTION FOR THEENERGY INDUSTRY
【24h】

CLIMATE CHANGE AND SEQUESTRATION OF CO2 INGEOLOGICAL MEDIA: A VIABLE OPTION FOR THEENERGY INDUSTRY

机译:CO2地质介质的气候变化和隔离:能源行业的可行选择

获取原文

摘要

Atmospheric concentrations ofCO2, a major greenhouse gas, have risenprimarily as a consequence of fossil fuelcombustion for energy production. Thedeveloped world has committed to reduceby 2012 the release into the atmosphere ofanthropogenic CO2 at levels on averagelower by 5.2% than those of 1990.Mitigation of human-induced climatechange involves basically threeapproaches. The first approach is toincrease the efficiency of primary energyconversion and end use. The secondapproach is to substitute lower-carbon orcarbon-free energy sources for the currentsources. The third approach is carbonsequestration. Any viable system forsequestering carbon must be safe,environmentally benign, effective,economical and acceptable to the public.Sequestration of CO2 in geological mediais likely to provide the first large-scaleopportunity for concentrated sequestrationof CO2, being immediately applicable as aresult of the experience already gained inoil and gas production, and storage ofnatural gas.Given their inherent advantages,such as availability, competitive cost, andease of transport and storage, fossil fuelswill remain a major component of world’senergy supply in the foreseeable future.Fossil fuels are serendipitously linked withsedimentary basins in which CO2 can besequestered1. CO2 can be sequestered instructural or stratigraphic traps, similarlyto hydrocarbons trapped in naturalreservoirs. Depleted gas reservoirs areprimary candidates as geological traps forCO2. Carbon dioxide can be trapped bydissolution in oil or in deep brines.Solubility trapping in oil still requires ageological trap (the oil reservoir). The technology is commercially proven andapplied in enhanced oil recoveryoperations. Up to 30 % of CO2 injected indeep saline aquifers dissolves over time inthe formation water2. Injection anddissolution of CO2 in regional-scale flowsystems leads to hydrodynamic trappingbeneath competent, regional-scale sealingaquitards3. A considerable increase inpermanently sequestered CO2 by injectionin deep aquifers would be achievedthrough mineral trapping3. Preferentialadsorption of gaseous CO2 into the coalmatrix and methane release leads toadsorption trapping in coal beds4. Injectionof CO2 into deep uneconomic coal bedshas the added advantage that it releasesmethane that can be produced in enhancedcoalbed methane recovery4. Cavitytrapping refers to CO2 injection in minedcaverns in salt beds and domes, similarlyto the storage of natural gas. Although saltcaverns theoretically have a large storagecapacity, the associated costs are too highand the environmental problems related tobrine disposal are significant.The selection of the method, strataand site for CO2 sequestration ingeological media depends on a number ofspecific criteria being met. These criteriaare scale dependent, some applying at thebasin scale, other being site specific. Thebasin-scale criteria5 relate to: 1) tectonicsetting, b) hydrodynamic and geothermalregimes, c) hydrocarbon potential andbasin maturity; d) surface infrastructure;and e) socio-political conditions in thejurisdiction covering the basin. The sitespecificcriteria fall into several categories:1) surface; 2) in-situ conditions; 3) storagecapacity; 4) injectivity and flow dynamics;and 5) sequestration efficiency(confinement safety). The surfaceinfrastructure for CO2 separation, capture,transport and injection into the ground,
机译:大气浓度 二氧化碳,一种主要的温室气体,已经上升 主要是化石燃料的结果 燃烧产生能量。这 发达国家已承诺减少 到2012年释放到大气中 人为二氧化碳的平均水平 比1990年下降5.2%。 减轻人为气候 变更基本上涉及三个 方法。第一种方法是 提高一次能源的效率 转换和最终用途。第二 方法是替代低碳或 当前的无碳能源 资料来源。第三种方法是碳 隔离。任何可行的系统 隔离碳必须是安全的, 对环境无害,有效, 经济并且为公众所接受。 地质介质中的二氧化碳封存 可能会提供第一个大规模 集中隔离的机会 的二氧化碳排放量,可立即作为 已经获得的经验的结果 石油和天然气的生产和储存 天然气。 鉴于其固有的优势, 例如可用性,竞争成本以及 易于运输和存储,化石燃料 仍将是世界的主要组成部分 在可预见的未来能源供应。 化石燃料与 可在其中沉积二氧化碳的沉积盆地 隔离1。二氧化碳可以隔离在 类似地,构造或地层圈闭 捕获天然存在的碳氢化合物 水库。枯竭的气藏是 主要候选者为 二氧化碳二氧化碳可以被 溶于油或深盐水中。 油中的溶解性捕集仍需要 地质陷阱(储油库)。该技术已经过商业验证,并且 用于提高采油率 操作。最多注入30%的二氧化碳 随着时间的流逝,深层盐水溶解在水中 地层水2。注射和 二氧化碳在区域尺度流动中的溶解 系统导致流体动力捕集 在主管的区域级密封之下 阿奎达兹3。显着增加 通过注入永久隔离二氧化碳 在深层含水层中将得以实现 通过矿物捕集3。优惠 气态二氧化碳吸附到煤中 基质和甲烷释放导致 煤层中的吸附捕集4。注射 二氧化碳进入深层不经济的煤层 具有释放的附加优势 可以增强产生的甲烷 煤层气回收4。腔数 捕集是指在矿井中注入二氧化碳 同样,盐床和圆顶中的洞穴 储存天然气。虽然盐 从理论上说,洞穴有很大的储藏空间 能力,相关的成本太高 以及与之相关的环境问题 盐水处理非常重要。 方法的选择,分层 和二氧化碳封存的地点 地质媒介取决于许多 符合特定标准。这些标准 与规模有关,有些适用于 盆地规模,其他因地而异。这 流域尺度标准5涉及:1)构造 设置,b)流体动力和地热 c)碳氢化合物的潜力和 盆地成熟度d)地面基础设施; e)的社会政治条件 管辖范围包括流域。特定地点 标准分为以下几类: 1)表面; 2)原位条件; 3)储存 容量; 4)注入性和流动动力学; 5)封存效率 (限制安全)。表面 二氧化碳分离,捕集, 运输并注入地下,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号