【24h】

Electrolytic respiration supports aerobic and anaerobic bacterial growth

机译:电解呼吸支持需氧和厌氧细菌的生长

获取原文
获取原文并翻译 | 示例

摘要

Bacteria use cellular respiration to convert energy of substrates to a form usable by the cells, a process which entails the electrons transfer from donors to acceptors along a respiratory chain. We therefore hypothesized that if an electrode could be employed as the electron donor or acceptor, it might be possible to artificially control the respiratory electron flow supporting the energy for bacterial growth. Here we describe electrolytic respiration for both aerobic and anaerobic growth of the chemolithoautotrophic bacterium Thiobacillus ferrooxidans. The cathode served as the electron donor for aerobic respiration. The bacterium respired aerobically on the oxidation of Fe~(2+). Fe~(3+) produced by the respiration was regenerated to Fe~(2+) by the electrochemical reduction on the cathode. Therefore, the cathode supplied the electron to the bacterium by the electrolysis through iron as the mediator. The final cell density with the electrolysis reached 10~(10) cells/ml after 6days incubation, which was a 50-fold increase over cultivation without the electrolysis. In the same manner, the cathode served as the terminal electron acceptor for anaerobic respiration of the bacterium, while H_2 served as the electron donor. The bacterium could grow on anaerobic oxidation of H_2 by Fe~(3+). The electron from H_2 was passed to Fe~(3+) through the cells, and the passed electron in Fe~(2+) was finally accepted by the cathode. The electron flow from H_2 to the cathode was mediated by iron, which shuttled electrons between the cells and the cathode, enabling bacterial cultures to reach a density of 10~(10) cells/ ml. The eletrolytic cultivation would be a potentially productive strategy for bacterial cultivation as a result of the conversion of electricity into life energy.
机译:细菌利用细胞呼吸将底物的能量转换为细胞可利用的形式,该过程需要电子沿着呼吸链从供体转移到受体。因此,我们假设如果电极可以用作电子供体或受体,则有可能人为地控制呼吸电子流以支持细菌生长的能量。在这里,我们描述了自养自养细菌铁氧化硫杆菌(Thiobacillus ferrooxidans)的需氧和厌氧生长的电解呼吸。阴极用作有氧呼吸的电子供体。细菌在Fe〜(2+)的氧化作用下需氧呼吸。呼吸产生的Fe〜(3+)通过阴极上的电化学还原反应再生为Fe〜(2+)。因此,阴极通过铁作为介体通过电解将电子提供给细菌。温育6天后,通过电解的最终细胞密度达到10〜(10)细胞/ ml,这比不进行电解的培养物增加了50倍。以相同的方式,阴极充当细菌厌氧呼吸的末端电子受体,而H_2充当电子供体。该细菌可通过Fe〜(3+)对H_2的厌氧氧化而生长。来自H_2的电子通过电池传递到Fe〜(3 +),Fe〜(2+)中通过的电子最终被阴极接受。从H_2到阴极的电子流是由铁介导的,铁使电子在细胞和阴极之间穿梭,使细菌培养物的密度达到10〜(10)个细胞/ ml。由于将电能转化为生命能量,电解培养将是细菌培养的一种潜在的生产策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号