首页> 外文会议>International Biohydrometallurgy Symposium, IBS-2001 Sep 16-19, 2001, Ouro Preto, Minas Gerais, Brazil >Response of microbial systems to thermal stress in biooxidation-heap pretreatment of refractory gold ores
【24h】

Response of microbial systems to thermal stress in biooxidation-heap pretreatment of refractory gold ores

机译:难处理金矿石生物氧化堆预处理中微生物系统对热应力的响应

获取原文
获取原文并翻译 | 示例

摘要

Operation of a commercial scale biooxidation heap for pretreatment of refractory gold ores demonstrates the propensity of heaps to heat concurrent with pyrite oxidation. Heap temperatures can reach 75℃. The high temperature is lethal for mesophilic iron-oxidizing bacteria. Column testing was conducted to compare effects on biooxidation pretreatment of a sulfidic refractory gold ore and the microbes response to temperature when bacteria and archaea were grown at different temperatures. Five columns were operated at a different temperature regime: 20-23℃; 35℃; 50℃; 60℃; and one column varied from 20-23℃ to 60℃. For the variable temperature column, the temperature was increased stepwise from 20-23℃, to 35℃, to 50℃, to 60℃ in two-week increments; after two weeks at 60℃, the temperature was decreased every two weeks in the same stepwise manner. The following inocula were used: (1) columns at 20-23℃ and 35℃, mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans; (2) column at 50℃, moderate-thermophilic iron-oxidizing Sulfobacillus-type bacteria; (3) column at 60℃, hyper-thermophilic archaea, Acidianus and Metallospheara species; (4) an equal mix of all of the above for the variable temperature column. The hyper-thermophiles did not increase in numbers until the temperature was increased to 50℃ and above. Lowering the temperature resulted in a decrease in population density of this group of microbes. The moderately thermophilic bacteria increased in number until the temperature was raised to 60℃; at that point numbers decreased and remained stable as further decrease in temperature occurred. Decimation of the mesophilic iron oxidizing bacteria occurred when the temperature was increased to 50° and 60℃. However, this population increased as the temperature was lowered. There was little difference in the amount of sulfide oxidation at either ambient room temperature or 35℃. Increasing the biooxidation temperature from 35?to 50℃ increased apparent sulfide oxidation from about 35 to 47%. At 60℃, sulfide oxidation was highest at about 51%. The variable temperature column also had higher sulfide oxidation, 41%, attributable to periods of high temperature biooxidation. The data suggest there is little difference among the groups of microbes used in this study in terms of sulfide oxidation and improved gold recovery, with some apparent slight advantage in using the hyper-thermophilic microbes.
机译:商业规模的生物氧化堆用于难处理金矿石的预处理证明了堆与黄铁矿氧化同时加热的倾向。堆温度可以达到75℃。高温对嗜温铁氧化细菌具有致命性。进行柱测试以比较硫化难处理金矿石对生物氧化预处理的影响以及细菌和古细菌在不同温度下生长时微生物对温度的响应。五根色谱柱在不同温度范围(20-23℃)下运行; 35℃; 50℃; 60℃;一根色谱柱的温度范围为20-23℃至60℃。对于可变温度柱,温度以两周为增量逐步从20-23℃升至35℃,50℃升至60℃。在60℃下两周后,温度以相同的方式每两周降低一次。使用以下接种物:(1)在20-23℃和35℃的柱子上,酸性氧化铁硫杆菌和氧化铁螺旋体的混合培养; (2)50℃柱温,中温铁氧化性芽孢杆菌型细菌; (3)60℃柱,超嗜热古生菌,嗜酸性和金属菌属; (4)将上述所有内容均等混合使用。直到温度升高到50℃以上,高嗜热菌的数量才增加。降低温度导致该组微生物的种群密度降低。中度嗜热细菌的数量增加,直到温度升至60℃。在这一点上,随着温度的进一步降低,数量减少并保持稳定。当温度升高至50°和60℃时,嗜温铁氧化细菌的数量减少。但是,随着温度的降低,这一种群增加了。在室温或35℃下硫化物的氧化量几乎没有差异。将生物氧化温度从35℃升高到50℃会使表观硫化物氧化率从35%升高到47%。在60℃时,硫化物氧化最高,约为51%。可变温度柱还具有较高的硫化物氧化率(41%),这归因于高温生物氧化期。数据表明,在本研究中使用的微生物组之间在硫化物氧化和改进的金回收方面几乎没有差异,在使用超嗜热微生物方面有一些明显的轻微优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号