首页> 外文会议>International conference on communications and cyber physical engineering >Characterization and System Identification of XY Flexural Mechanism sing Double Parallelogram Manipulator for High Precision Scanning
【24h】

Characterization and System Identification of XY Flexural Mechanism sing Double Parallelogram Manipulator for High Precision Scanning

机译:XY弯曲机构双平行四边形操纵器的高精度表征与系统辨识

获取原文

摘要

This article represents modeling of double parallelogram flexural manipulator derived from basic classical mechanics theory. Fourth order vibration wave equation is used for mathematical modeling and its performance is determined for step input and sinusoidal forced input. Static characterization of DFM is carried out to determine stiffness and force deflection characteristics over the entire motion range and dynamic characteristics is carried out using Transient response and Frequency response. Transient response is determined using step input to DFM which gives system properties such as damping, rise time and settling time. These parameters are then compared with theoretical model presented previously. Frequency response of DFM system gives characteristics of system with different frequency inputs which is used for experimental modeling of DFM device. Here, Voice Coil Motor is used as Actuator and optical encoder is used for positioning sensing of motion stage. It is noted that theoretical model is having 5% accuracy with experimental results. To achieve better position and accuracy, PID and LQR (Linear Quadratic Regulator) implementation was carried out on experimental model. PID gains are optimally tuned by using Ziegler Nichols approach. PID control is implemented experimentally using dSPACE DS1104 microcontroller and Control Desk software. Experimentally, it is observed that positioning accuracy is less than 5 μm. Further multiple DFM blocks are arranged for developing XY flexural mechanism and static characterization was carried out on it. The comparison of experimental and FEA results for X-direction and Y-direction is presented at end of paper.
机译:本文介绍了源自经典经典力学理论的双平行四边形弯曲机械手的建模。使用四阶振动波方程进行数学建模,并确定阶跃输入和正弦强制输入的性能。对DFM进行静态表征,以确定整个运动范围内的刚度和力偏转特性,并使用瞬态响应和频率响应来实现动态特性。瞬态响应是使用DFM的阶跃输入来确定的,阶跃输入提供了诸如阻尼,上升时间和建立时间之类的系统属性。然后将这些参数与先前介绍的理论模型进行比较。 DFM系统的频率响应给出了具有不同频率输入的系统的特性,用于DFM设备的实验建模。在这里,音圈电机用作致动器,光学编码器用于运动平台的位置感测。注意,理论模型的实验结果具有5%的精度。为了获得更好的位置和精度,在实验模型上实施了PID和LQR(线性二次调节器)。通过使用Ziegler Nichols方法可以优化PID增益。 PID控制是使用dSPACE DS1104微控制器和Control Desk软件通过实验实现的。在实验中,观察到定位精度小于5μm。此外,还安排了多个DFM块以开发XY挠曲机构,并对其进行了静态表征。最后在X方向和Y方向上进行了实验和FEA结果的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号