首页> 外文会议>Infrared remote sensing and instrumentation XXIII >Hot electron detectors and energy conversion in the UV and IR
【24h】

Hot electron detectors and energy conversion in the UV and IR

机译:UV和IR中的热电子探测器和能量转换

获取原文
获取原文并翻译 | 示例

摘要

Semiconductor materials are well suited for power conversion when the incident photon energy is slightly larger than the bandgap energy of the semiconductor. However, for photons with energy significantly greater than the bandgap energy, power conversion efficiencies are low. Further, for photons with energy below the bandgap energy, the absence of absorption results in no power conversion. Here we describe photon detection and power conversion of both high energy and sub-bandgap photons using hot carrier effects. For the absorption of high-energy photons, excited electrons and holes have excess kinetic energy, which results in the generation of hot electrons and holes. Energy is typically lost through a thermalization process between the carriers and the lattice. However, collection of carriers before thermalization allows for reduced power loss. Devices consisting of a three-layer stack (transparent conductor - insulator - metal) can be used to generate and collect these hot carriers. Alternatively, when a semiconductor is used, photons with energy below the semiconductor bandgap energy generally do not generate electrons and holes; however, hot carrier collection is still possible in semiconductor devices with a metal layer when a Schottky junction is formed at the semiconductor-metal interface. Such structures enable IR detection based on sub-bandgap photon absorption. Combining these concepts, hot carrier generation and collection and be exploited over a large range of incident wavelengths spanning the UV, visible, and IR.
机译:当入射光子能量略大于半导体的带隙能量时,半导体材料非常适合于功率转换。但是,对于能量明显大于带隙能量的光子,功率转换效率很低。此外,对于能量低于带隙能量的光子,没有吸收会导致没有功率转换。在这里,我们描述了使用热载流子效应的高能子带隙光子的光子检测和功率转换。为了吸收高能光子,受激电子和空穴具有过量的动能,这导致产生热电子和空穴。能量通常通过载体和晶格之间的热化过程而损失。但是,在热化之前收集载流子可以减少功率损耗。由三层堆叠(透明导体-绝缘体-金属)组成的设备可用于生成和收集这些热载流子。或者,当使用半导体时,能量低于半导体带隙能量的光子通常不会产生电子和空穴;因此,通常不会产生电子和空穴。然而,当在半导体-金属界面处形成肖特基结时,在具有金属层的半导体器件中仍然可能进行热载流子收集。这样的结构使得能够基于子带隙光子吸收进行IR检测。结合这些概念,可以生成和收集热载流子,并可以在跨越UV,可见光和IR的大范围入射波长中加以利用。

著录项

  • 来源
  • 会议地点 San Diego CA(US)
  • 作者单位

    Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA 20742-3511,Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD USA 20742-3511;

    Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA 20742-3511,Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD USA 20742-3511;

    Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA 20742-3511,Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD USA 20742-3511;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hot carriers; plasmonics; photonics; photovoltaics; solar cells; detectors;

    机译:热载体;等离子体光子学光伏太阳能电池;探测器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号