首页> 外文会议>Infrared remote sensing and instrumentation XXIII >Enhancing selectivity of infrared emitters through quality-factor matching
【24h】

Enhancing selectivity of infrared emitters through quality-factor matching

机译:通过品质因数匹配提高红外发射器的选择性

获取原文
获取原文并翻译 | 示例

摘要

It has recently been proposed that designing selective emitters with photonic crystals (PhCs) or plasmonic metamaterials can suppress low-energy photon emission, while enhancing higher-energy photon emission. Here, we will consider multiple approaches to designing and fabricating nanophotonic structures concentrating infrared thermal radiation at energies above a critical threshold. These are based on quality factor matching, in which one creates resonant cavities that couple light out at the same rate that the underlying materials emit it. When this quality-factor matching is done properly, emissivities can approach those of a blackbody, but only within a selected range of thermal photon energies. One potential application is for improving the conversion of heat to electricity via a thermophotovoltaic (TPV) system, by using thermal radiation to illuminate a photovoltaic (PV) diode, hi this study, realistic simulations of system efficiencies are performed using finite-difference time domain (FDTD) and rigorous coupled wave analysis (RCWA) to capture both thermal radiation and PV diode absorption. We first consider a previously studied 2D molybdenum photonic crystal with a commercially-available silicon PV diode, which can yield TPV efficiencies up to 26.2%. Second, a ID-periodic samarium-doped glass emitter with a gallium antimonide (GaSb) PV diode is presented, which can yield efficiencies up to 38.5%. Finally, a 2D tungsten photonic crystal with a ID integrated, chirped filter and the GaSb PV diode can yield efficiencies up to 38.2%; however, the fabrication procedure is expected to be more challenging. The advantages and disadvantages of each strategy will be discussed.
机译:最近有人提出,设计具有光子晶体(PhCs)或等离子超材料的选择性发射器可以抑制低能光子发射,同时增强高能光子发射。在这里,我们将考虑多种设计和制造纳米光子结构的方法,这些结构将红外热辐射集中在临界阈值以上的能量处。这些是基于品质因数匹配的,其中会产生谐振腔,这些谐振腔以与基础材料发射光的速率相同的速率耦合出光。正确完成此质量因数匹配后,发射率可以接近黑体的发射率,但只能在选定的热光子能量范围内。一种潜在的应用是通过使用热辐射照亮光伏(PV)二极管来改善通过热光伏(TPV)系统的热能转化。在这项研究中,使用有限差分时域进行了系统效率的仿真(FDTD)和严格的耦合波分析(RCWA)来捕获热辐射和PV二极管吸收。我们首先考虑先前研究的带有商业上可买到的硅PV二极管的2D钼光子晶体,它可以产生高达26.2%的TPV效率。其次,提出了一种具有锑化镓(GaSb)PV二极管的ID周期掺mar玻璃发射极,其效率可高达38.5%。最终,带有ID集成,chi滤波器和GaSb PV二极管的2D钨光子晶体可以产生高达38.2%的效率。然而,预期制造过程将更具挑战性。将讨论每种策略的优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号