首页> 外文会议>Evolutionary and bio-inspired computation: Theory and applications IV >Multi-Scale Graph Theoretic Image Segmentation Using Wavelet Decomposition
【24h】

Multi-Scale Graph Theoretic Image Segmentation Using Wavelet Decomposition

机译:小波分解的多尺度图理论图像分割

获取原文
获取原文并翻译 | 示例

摘要

We present a novel implementation of multi-scale graph-theoretic image segmentation using wavelet decomposition. This bottom-up segmentation through a weighted agglomeration approach utilizes the specific statistical characteristics of vehicles to quickly detect regions of interest in image frames. The method incorporates pixel intensity, texture, and boundary values to detect salient segments at multiple scales. Wavelet decomposition creates gradient and image approximations at multiple scales for fast edge weighting between nodes in the graph. Nodes with strong edge weights merge to form a single node at a higher level, where new internal statistics are calculated and edges are created with nodes at the new scale. Top-down saliency energy values are then calculated for each pixel on every scale, with the pixel labeled as a member of the node (segment) at the scale of highest energy. Salient node information is then used for binary classification as a potential object or non-object passes to classification and tracking algorithms. The method provides multi-scale segmentations by agglomerating nodes that consist of finer node agglomerations (lower scales). Criteria for weights between nodes include multi-level features, such as average intensity, variance, and boundary completion values. This method has been successfully tested on an electro-optical (EO) data set with multiple varying operating conditions (OCs). It has been shown to successfully segment both fully and partially occluded objects with minimal false alarms and false negatives. This method can easily be extended to produce more accurate segmentations through the sensor fusion of registered data types.
机译:我们提出一种使用小波分解的多尺度图论图像分割的新颖实现。通过加权集聚方法进行的这种自下而上的分割利用了车辆的特定统计特征,以快速检测图像帧中的感兴趣区域。该方法结合了像素强度,纹理和边界值,可以在多个尺度上检测显着片段。小波分解可在多个比例上创建梯度和图像近似值,以实现图中节点之间的快速边缘加权。具有较高边权重的节点合并以形成较高级别的单个节点,在此将计算新的内部统计数据,并使用新比例的节点创建边。然后针对每个比例的每个像素计算自上而下的显着性能量值,其中该像素被标记为最大能量比例的节点(段)的成员。然后,当潜在对象或非对象传递给分类和跟踪算法时,将显着节点信息用于二进制分类。该方法通过聚集由较精细的节点集聚(较低尺度)组成的节点来提供多尺度分割。节点之间权重的标准包括多级特征,例如平均强度,方差和边界完成值。该方法已经在具有多种变化的操作条件(OC)的电光(EO)数据集上成功进行了测试。它已显示出成功地分割了部分和完全被遮挡的对象,并减少了误报和误报。通过注册数据类型的传感器融合,可以轻松扩展此方法以产生更准确的分段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号