首页> 外文会议>Colloidal nanoparticles for biomedical applications IX >Light-addressable amperometric electrodes for enzyme sensors based on direct quantum dot-electrode contacts
【24h】

Light-addressable amperometric electrodes for enzyme sensors based on direct quantum dot-electrode contacts

机译:基于直接量子点电极接触的酶传感器的光寻址安培电极

获取原文
获取原文并翻译 | 示例

摘要

Quantum dots allow the generation of charge carriers upon illumination. When these particles are attached to an electrode a photocurrent can be generated. This allows their use as a light-switchable layer on the surface. The QDs can not only exchange electrons with the electrode, but can also interact with donor or acceptor compounds in solution providing access to the construction of signal chains starting from an analyte molecule. The magnitude and the direction of the photocurrent depend on several factors such as electrode polarization, solution pH and composition. These defined dependencies have been evaluated with respect to the combination of QD-electrodes with enzyme reactions for sensorial purpose. CdSe/ZnS-QD-modified electrodes can be used to follow enzymatic reactions in solution based on the oxygen sensitivity. In order to develop a photoelectrochemical biosensor, e.g. glucose oxidase is immobilized on the CdSe/ZnS-electrode. One immobilization strategy applies the layer-by-layer-technique of GOD and a polyelectrolyte. Photocurrent measurements of such a sensor show a clear concentration dependent behaviour. The principle of combining QD electrodes with a layered architecture and light triggered read-out can also be transferred to other enzymes such sarcosine oxidase. The sensitivity of quantum dot electrodes can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be demonstrated that direct electron transfer from excited quantum dots can be achieved with the redox protein cytochrome c. This allows the detection of the protein, but also interaction partners such as enzymes or superoxide.
机译:量子点允许照明时产生电荷载流子。当这些颗粒附着在电极上时,会产生光电流。这允许它们用作表面上的光可切换层。 QD不仅可以与电极交换电子,还可以与溶液中的供体或受体化合物相互作用,从而提供了从分析物分子开始构建信号链的途径。光电流的大小和方向取决于几个因素,例如电极极化,溶液的pH值和组成。对于QD电极与酶反应的组合,已经针对感官目的评估了这些定义的依赖性。基于氧敏感性,CdSe / ZnS-QD修饰电极可用于跟踪溶液中的酶促反应。为了开发光电化学生物传感器,例如葡萄糖氧化酶固定在CdSe / ZnS电极上。一种固定化策略应用了GOD和聚电解质的逐层技术。这种传感器的光电流测量显示出明显的浓度依赖性行为。将QD电极与分层结构和光触发的读数组合在一起的原理也可以转移到其他酶(例如肌氨酸氧化酶)上。量子点电极的灵敏度可能受其他纳米粒子的影响,但也可能受到多层量子点的影响。在另一个研究方向上,可以证明使用氧化还原蛋白细胞色素c可以实现从激发的量子点进行直接电子转移。这样不仅可以检测蛋白质,还可以检测相互作用的伴侣,例如酶或超氧化物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号