首页> 外文会议>ASME(American Society of Mechanical Engineers) Turbo Expo vol.2; 20070514-17; Montreal(CA) >EFFECT OF STRAIN RATE AND PRESSURE ON THE FLAME STRUCTURE AND EMISSION CHARACTERISTICS OF SYNGAS FLAMES
【24h】

EFFECT OF STRAIN RATE AND PRESSURE ON THE FLAME STRUCTURE AND EMISSION CHARACTERISTICS OF SYNGAS FLAMES

机译:应变率和压力对共气瓶火焰结构和排放特性的影响

获取原文
获取原文并翻译 | 示例

摘要

Synthesis gas or "Syngas" is being recognized as a viable energy source worldwide, particularly for stationary power generation due to its wide flexibility in fuel sources. There are gaps in the fundamental understanding of syngas combustion and emissions characteristics, especially at elevated pressures, high strain rates and in more practical conditions. This paper presents a numerical and experimental investigation to gain fundamental understanding of combustion and emission characteristics of syngas with varying composition, pressure and strain rate. Two representative syngas fuel mixtures, 50% H_2 / 50% CO and 5% H_2 / 95% CO (% vol.), are chosen, three detailed chemical kinetic models are used namely, GRI 3.0, Davis et al. and Li et al. mechanisms. Davis et al. mechanism agrees best with the experimental data hence is used to simulate the partially premixed flame structures at all pressures. Results indicate that for the pressure range investigated, a typical double flame structure was observed characterized by a rich premixed reaction zone (RPZ) on the fuel side and a nonpremixed reaction zone (NPZ) at the oxidizer side nozzle with the stabilizing due to the H_2 chemistry rather than the CO chemistry. Sensitivity analysis to mass burning rates for unstretched laminar flame shows that flames are more sensitive to H_2 chemistry. For both representative mixtures an increase in pressure leads to a significant increase in NO due to increase in flame temperature. The emission index for these flames is also found to follow a similar behavior with pressure. Although flame temperatures were higher for flame A, total NO is lower for these flames due to increases in reburn characteristics. Thermal route dominates NO production while, prompt route is negligible. Experimental analysis on the stability of nonpremixed syngas/air flames showed that the flames were very stable for the range of strain rates investigated. At low strain rates it required 0.5% H_2 to establish a stable flame.
机译:合成气或“合成气”由于其在燃料源中的广泛灵活性而被公认为在世界范围内是可行的能源,特别是对于固定式发电。在对合成气燃烧和排放特性的基本理解上存在差距,尤其是在高压,高应变率和更实际的条件下。本文提供了一个数值和实验研究,以对组成,压力和应变率变化的合成气的燃烧和排放特性有基本的了解。选择两种代表性的合成气燃料混合物,分别为50%H_2 / 50%CO和5%H_2 / 95%CO(%体积),使用了三个详细的化学动力学模型,即GRI 3.0,Davis等。和李等。机制。戴维斯等。机理与实验数据最吻合,因此可用于模拟在所有压力下的部分预混火焰结构。结果表明,在所研究的压力范围内,观察到典型的双火焰结构,其特征在于燃料侧的预混合反应区(RPZ)丰富,氧化剂侧喷嘴的非预混合反应区(NPZ)具有H_2的稳定作用化学而不是一氧化碳化学。对未拉伸层流火焰的质量燃烧速率的敏感性分析表明,火焰对H_2化学更加敏感。对于两种代表性混合物,由于火焰温度的升高,压力的增加导致NO的显着增加。还发现这些火焰的发射指数在压力下遵循相似的行为。尽管火焰A的火焰温度较高,但由于再燃特性的提高,这些火焰的总NO较低。热路线主导着NO的产生,而迅速路线则可以忽略不计。对非预混合合成气/空气火焰稳定性的实验分析表明,在所研究的应变速率范围内,火焰非常稳定。在低应变率下,需要0.5%的H_2才能建立稳定的火焰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号