首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference;AIAA SciTech forum >A Micromechanical Approach to Static Failure Prediction of Heterogeneous Materials
【24h】

A Micromechanical Approach to Static Failure Prediction of Heterogeneous Materials

机译:异质材料静态失效预测的微力学方法

获取原文

摘要

The objective of this paper is to enable Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH) to predict the static failure strength and the initial failure envelop of heterogeneous materials obeying various failure criteria. These predictions are performed using several representative examples of heterogeneous materials such as continuous fiber reinforced composite, particle reinforced composite, discontinuous fiber reinforced composite, and woven composite. The static failure predictions of VAMUCH are partially evaluated with various micromecahnics approaches such as Mori-Tanaka (MT), Double Inclusion (DI), Generalized Methods of Cells (GMC), High Fidelity Generalized Methods of Cells (HFGMC) and also Finite Element Analysis (FEA). The evaluation reveals that MT and DI insufficiently approximate the static failure compared with FEA whereas GMC and HFGMC better predict compared with MT and DI. However GMC and HFGMC poorly predict failure particularly for maximum principal stress failure criterion. GMC shows relatively better agreement with FEA for Tsai-Hill failure criterion. On the contrary, VAMUCH shows excellent agreements with FEA for all aforementioned examples of heterogeneous materials. Moreover, VAMUCH also generates the initial failure envelop for combined axial and transverse shear using maximum shear stress and Tsai-Hill failure criteria. The prediction of combined shear usually cannot be rigourously performed using commercial FEA software due to complex boundary conditions. In general, the outputs of the predictions signify that maximum principal stress criteria is more conservative compared with Tsai-Hill and Tsai-Wu failure criteria. It is also noticed that the predictions of Tsai-Hill and maximum shear stress criteria agree well for shear loading conditions except for the woven composite.
机译:本文的目的是使变分渐近渐进渐进方法能够适用于单元细胞均质化(VAMUCH),以预测异质材料的静态破坏强度和初始破坏包络,并遵循各种破坏准则。这些预测是使用异质材料的几个代表性示例进行的,例如连续纤维增强复合材料,颗粒增强复合材料,不连续纤维增强复合材料和机织复合材料。 VAMUCH的静态失效预测部分通过各种微机械方法进行了部分评估,例如Mori-Tanaka(MT),Double Inclusion(DI),通用细胞方法(GMC),高保真通用细胞方法(HFGMC)以及有限元分析(FEA)。评估显示,与FEA相比,MT和DI不能充分近似静态失效,而与MT和DI相比,GMC和HFGMC更好地预测了静态失效。但是,GMC和HFGMC很难预测失效,特别是对于最大主应力失效准则。对于Tsai-Hill失效准则,GMC与FEA表现出相对较好的一致性。相反,对于上述所有非均质材料实例,VAMUCH与FEA均显示出极好的协议。此外,VAMUCH还使用最大剪切应力和Tsai-Hill破坏准则为组合的轴向和横向剪切生成初始破坏包络。由于复杂的边界条件,通常无法使用商用FEA软件严格执行组合剪切的预测。一般而言,预测的输出表明,与Tsai-Hill和Tsai-Wu破坏准则相比,最大主应力准则更为保守。还应注意的是,对于Tsai-Hill的预测和最大剪切应力标准,除了机织复合材料以外,在剪切载荷条件下均非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号