首页> 外文会议>Adaptive optics and wavefront control for biological systems II >Wavefront sensorless approaches to adaptive optics for in vivo fluorescence imaging of mouse retina
【24h】

Wavefront sensorless approaches to adaptive optics for in vivo fluorescence imaging of mouse retina

机译:波前无传感器自适应光学的小鼠视网膜体内荧光成像方法

获取原文
获取原文并翻译 | 示例

摘要

Adaptive optics (AO) is necessary to correct aberrations when imaging the mouse eye with high numerical aperture. In order to obtain cellular resolution, we have implemented wavefront sensorless adaptive optics for in vivo fluorescence imaging of mouse retina. Our approach includes a lens-based system and MEMS deformable mirror for aberration correction. The AO system was constructed with a reflectance channel for structural images and fluorescence channel for functional images. The structural imaging was used in real-time for navigation on the retina using landmarks such as blood vessels. We have also implemented a tunable liquid lens to select the retinal layer of interest at which to perform the optimization. At the desired location on the mouse retina, the optimization algorithm used the fluorescence image data to drive a modal hill-climbing algorithm using an intensity or sharpness image quality metric. The optimization requires ~30 seconds to complete a search up to the 20th Zernike mode. In this report, we have demonstrated the AO performance for high-resolution images of the capillaries in a fluorescence angiography. We have also made progress on an approach to AO with pupil segmentation as a possible sensorless technique suitable for small animal retinal imaging. Pupil segmentation AO was implemented on the same ophthalmic system and imaging performance was demonstrated on fluorescent beads with induced aberrations.
机译:当使用高数值孔径对鼠标进行成像时,必须使用自适应光学(AO)来校正像差。为了获得细胞分辨率,我们为小鼠视网膜的体内荧光成像实现了波前无传感器自适应光学器件。我们的方法包括基于镜头的系统和用于像差校正的MEMS变形镜。构造了AO系统,其结构图像具有反射通道,功能图像具有荧光通道。实时使用结构成像在视网膜上使用诸如血管之类的地标导航。我们还实现了可调液体透镜,以选择感兴趣的视网膜层进行优化。在鼠标视网膜上的所需位置,优化算法使用荧光图像数据使用强度或清晰度图像质量度量来驱动模态爬山算法。优化过程需要约30秒才能完成直至第20种Zernike模式的搜索。在此报告中,我们已经证明了在荧光血管造影术中毛细管对高分辨率图像的AO性能。我们还采用瞳孔分割的AO方法取得了进展,这是一种适用于小动物视网膜成像的可能的无传感器技术。在相同的眼科系统上实施了瞳孔分割AO,并在具有诱发像差的荧光珠上证明了成像性能。

著录项

  • 来源
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Engineering Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6;

    CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, Padova, Italy, 35131,Hilase project, Institute of Physics AS CR v.v.i., Na Slovance 2, Prague, Czech Republic, 18221;

    Engineering Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6;

    Engineering Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6;

    UC Davis RISE Small Animal Ocular Imaging Facility, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA 95616,Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology Vision Science, University of California Davis, Sacramento, CA, USA 95817;

    Engineering Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6;

    Engineering Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Adaptive optics; sensorless; pupil segmentation; fluorescence angiography; retina; mouse;

    机译:自适应光学无传感器瞳孔分割荧光血管造影视网膜老鼠;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号