首页> 外文会议>2nd International EUSPEN Conference on Precision Engineering Nanotechnology Vol.2, May 27th-31st, 2001, Turin, Italy >Registration and Modelling of Polymers Stress Propagation in Controlled Directional Fracture Processes by Microcutting and Indentation
【24h】

Registration and Modelling of Polymers Stress Propagation in Controlled Directional Fracture Processes by Microcutting and Indentation

机译:通过定向切割和压痕对定向断裂过程中的聚合物应力传播进行配准和建模

获取原文
获取原文并翻译 | 示例

摘要

At present time the precision and ultraprecision diamond single-point machining is the most effective technological method for optical, photonic and bioengineering polymeric components surface generation. Essential properties of polymer material in conjunction with correct geometrical form and special micro- and nano-geometrical structure of the surface layer allow to provide a high level of the operational characteristics for finished production. Providing for high quality surface layer demands to avoid the critical deformations and remanent strains in cut material as a result of contact processes, plastic and elastic deformations of the thermoplastic polymer material and heat exchange in the cutting zone. Practically, the single-point cutting process is a process of macro- and microindentation with directional deformation and posterior fracture of material by cutting tool, which is purely comparable with pyramidal or wedge indenter. But subject to a real magnitude of a cutting edge radius (which quite material for microcutting) we can consider this process as an analogy of boll indentation. Application of the experimental results and theoretical computations of polymer materials macroindentation process by pyramidal, cone, ball, wedge and all-round combined diamond and steel indenters is a real basis for elaboration of the Cutting Zone Physical Model as part of the comprehensive physical-chemical model of the polymer high quality surface layer forming process by precision micromachining.
机译:目前,精密和超精密金刚石单点加工是光学,光子和生物工程聚合物组件表面生成的最有效的技术方法。聚合物材料的基本特性与正确的几何形式以及表层的特殊微观和纳米几何结构相结合,可为成品生产提供高水平的操作特性。提供高质量的表面层要求避免由于接触过程,热塑性聚合物材料的塑性和弹性变形以及切削区域中的热交换而导致的切削材料中的临界变形和剩余应变。实际上,单点切割过程是通过切割工具对材料进行定向变形和后部断裂的宏观和微观压痕过程,这完全可以与锥形或楔形压头相媲美。但是,要根据切削刃半径的实际大小(对于微切削来说相当重要),我们可以将此过程视为类似于钻头压痕的过程。运用金字塔形,圆锥形,球形,楔形以及全方位结合的金刚石和钢制压头的高分子材料宏观压痕工艺的实验结果和理论计算的应用,是作为综合物理化学的一部分详细阐述切割区物理模型的真实基础精密微加工的聚合物高质量表面层形成过程的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号