【24h】

Gas dispersion trials: a surface area source enclosed by a windbreak

机译:气体扩散试验:被防风林包围的表面积源

获取原文
获取原文并翻译 | 示例

摘要

As a simple alternative to direct measurements, it may sometimes be useful to diagnose the strength (Q) of a finite surface area source of a trace gas, from nearby measurement(s) of concentration (C) at a point P. This is sometimes called "inverse dispersion", and requires the use of a suitable dispersion model, which must be provided measurements of the atmospheric state: at a minimum, the friction velocity u_*, Obukhov length L, roughness length Z_0, and mean wind direction β. The procedure could be represented symbolically as: Q~((est)) = Q~((est)) (C_P|u_*, K, z_0, β) (1) A particularly flexible instance of this approach was introduced by Flesch et al. (1995), based on (an ensemble of N) backward traiectories. Q~((est)) = U C_P/ n n = 1/ N ∑_i 2/w_(0i)/U where U is a reference windspeed (whose explicit inclusion renders the "magic number" n dimensionless). The summation runs over all "touchdowns" of trajectories on the source, and w_(0i) is the magnitude of the vertical velocity of the ith touchdown. We performed experiments to test the accuracy of the backwards Lagrangian stochastic ("bLS") procedure, by releasing methane from a 6m x 6m source on ground, and detecting line-average concentration nearby using lasers. Two papers at this conference describe the outcome: paper 9.8 covers the case where the source was on open terrain (undisturbed winds), and this paper covers the case where the source lay within the windbreak described 'in paper 2.5. Here we enquire whether the naive use of inverse dispersion (eqns 1, 2), using a dispersion model appropriate (only) for undisturbed surface layer winds, would have some value even if applied to estimate a source in a region of disturbed winds (Fig. 1). It is important to emphasize that, even in the horizontally-uniform case, source diagnosis for short periods (15-30 mins) by "inverse dispersion" carries an uncertainty of (roughly) +- 25% (the bias when successive short-term estimates are summed is smaller). This is because the micro-meteorological state (deduced from observations) and the dispersion model are built on a set of assumptions about the atmosphere: eg. Monin-Obukhov "universal" functions φ_m, φ_h for wind and temperature profiles, the ratio σ_w/u_*, and other "universal" constants.
机译:作为直接测量的一种简单替代方法,有时可能根据在点P处的浓度(C)的附近测量值来诊断微量气体的有限表面积源的强度(Q)。称为“逆色散”,需要使用合适的色散模型,必须提供大气状态的测量值:至少是摩擦速度u_ *,奥布霍夫长度L,粗糙度长度Z_0和平均风向β。该过程可以用符号表示:Q〜((est))= Q〜((est))(C_P | u_ *,K,z_0,β)(1)Flesch等人引入了这种方法的一个特别灵活的实例。等(1995年),基于(N个合奏)后向轨迹。 Q〜((​​est))= U C_P / n = 1 / N ∑_i 2 / w_(0i)/ U其中U是参考风速(其显式包含使“魔数” n无量纲)。总和遍历源上所有轨迹的“触地得分”,而w_(0i)是第i触地竖直速度的大小。我们进行了实验,通过从6m x 6m的地面上释放甲烷并使用激光检测附近的线平均浓度,来测试反向拉格朗日随机(“ bLS”)过程的准确性。这次会议上有两篇论文描述了结果:论文9.8涵盖了源位于开阔地带(不受干扰的风)的情况,而本文涵盖了源位于防风林内的情况(见论文2.5)。在这里,我们询问即使仅适用于估计受干扰的风区域中的震源,仅使用适用于(仅)适用于未扰动的表层风的频散模型的逆频散(eqns 1,2)的天真使用是否会具有一定的价值(图1)。需要强调的是,即使在水平均匀的情况下,通过“逆扩散”在短时间(15-30分钟)内进行源诊断也会带来(大约)±25%(连续短期的偏差)的不确定性。估算值之和较小)。这是因为微气象状态(从观测值推导出)和色散模型是建立在关于大气的一组假设上的: Monin-Obukhov的“通用”函数φ_m,φ_h用于风和温度曲线,比例σ_w/ u_ *和其他“通用”常数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号