首页> 外文会议>11th annual international energy conversion engineering conference >Understanding the thermodynamic possibilities and limitations of the solid-oxide fuel cell, gas turbine double cycle
【24h】

Understanding the thermodynamic possibilities and limitations of the solid-oxide fuel cell, gas turbine double cycle

机译:了解燃气轮机双循环固体氧化物燃料电池的热力学可能性和局限性

获取原文
获取原文并翻译 | 示例

摘要

A demand for high efficiency electricity generation has led to the development of power plants that combine a solid-oxide fuel cell with a gas turbine engine. The thermodynam-ically optimal configurations and limitations of this cycle are yet to be fully understood. This study addresses this issue using a novel method for engine optimization, denoted the "attractor" methodology. This method essentially tracks the effect every device in the engine architecture has on the ultimate system irreversibility. To maximize efficiency, this quantity should be minimized. The attractor was developed for optimization of gas turbine architectures and is extended here for use with solid-oxide fuel cells. A series of device orderings and optimal operating points are then motivated through the attractor analysis and confirmed as optimal through parametric analyses. Fuel cell length is a key variable in determining the best architecture. For common 0.5 m fuel cell tubes, the maximally efficient architecture examined is CX_(in)F_xBTX_(out) with a possible LHV efficiency of 75%. For a fuel cell with sufficient length to guarantee near-complete fuel utilization at 18 bar pressure, the best system changes to (CI)_nCX_(in)F_xBTX_(out) with a possible LHV efficiency of 79%. These efficiencies are not only higher than any existing double cycle, but also higher than Mitsubishi Heavy Industries' reported efficiency of their solid-oxide fuel cell, gas turbine, steam turbine triple cycle.
机译:对高效发电的需求导致了将固体氧化物燃料电池与燃气涡轮发动机结合在一起的发电厂的发展。该循环的热力学最佳配置和局限性尚待充分了解。这项研究使用一种新颖的引擎优化方法(称为“吸引子”方法)解决了这个问题。该方法实质上跟踪了引擎体系结构中每个设备对最终系统不可逆性的影响。为了使效率最大化,该数量应最小化。吸引器是为优化燃气轮机结构而开发的,在此扩展为用于固体氧化物燃料电池。然后通过吸引子分析来激发一系列设备排序和最佳工作点,并通过参数分析将其确定为最佳。燃料电池长度是确定最佳架构的关键变量。对于常见的0.5 m燃料电池管,所检查的最大效率架构是CX_(in)F_xBTX_(out),可能的LHV效率为75%。对于具有足够长度的燃料电池,以保证在18 bar压力下几乎完全利用燃料,最佳系统更改为(CI)_nCX_(in)F_xBTX_(out),可能的LHV效率为79%。这些效率不仅高于任何现有的双循环效率,而且还高于三菱重工报告的其固体氧化物燃料电池,燃气轮机,蒸汽轮机三重循环的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号