首页> 外文会议>11th annual international energy conversion engineering conference >EFFEECT OF SHAPED HOLES AND DENSITY RATIO ON FILM COOLING EFFICTIVENESS
【24h】

EFFEECT OF SHAPED HOLES AND DENSITY RATIO ON FILM COOLING EFFICTIVENESS

机译:异型孔和密度比对薄膜冷却效率的影响

获取原文
获取原文并翻译 | 示例

摘要

Film cooling has become a standard method for the protection of the skin of gas turbine blades against the influence high temperatures of the hot gas stream. The cooling air is usually injected into the boundary layer covering the skin through one or two rows of holes. A calculation method to predict heat transfer to the skin of a film cooled wall based on two parameters the film effectiveness and a heat transfer coefficient defined with the adiabatic wall temperature. Improvements have been made to the shaping of the cooling hole to provide higher heat transfer effectiveness. The present work study effect of the four shapes (1) Cylindrical Hole (REF),(2) Cusp Hole(CUSP), (3) Forward -Diffused Hole(FDIFF) and (4) Laterally-Diffused Hole(LDIFF) on film cooling effectiveness on the adiabatic wall flat plate. The present study of the film cooling to protect from high temperatures through the Parametric study of effect of shapes on the hole cooling, blowing ratio and density ratio on the film cooling effectiveness. Stream wise angle (α) is kept constant at 35 degree and compound (span wise) injection angle (β) is maintained at 90 degree. The series data are collected at fifth blowing ratios (M) = [0.5, 1, 1.25, 1.5 and 2]. The density ratio is constant at 1.97 but it varies from the best shape and blowing ratio at 6, 3, 1.97 and 1.5 Using computational fluid dynamics software FLUENT ® and choosing the standard k-ε model.
机译:薄膜冷却已成为保护燃气轮机叶片蒙皮免受高温气流影响的标准方法。冷却空气通常通过一或两排孔注入覆盖皮肤的边界层。一种基于两个参数(薄膜效率和由绝热壁温定义的传热系数)来预测薄膜冷却壁向皮肤传热的计算方法。已经对冷却孔的形状进行了改进以提供更高的热传递效率。本工作研究四种形状(1)圆柱孔(REF),(2)尖孔(CUSP),(3​​)前向扩散孔(FDIFF)和(4)横向扩散孔(LDIFF)在膜上的作用在绝热壁平板上的冷却效果。通过研究形状对孔冷却,吹塑比和密度比对膜冷却效果的影响,对膜冷却以防止高温进行保护的当前研究。流向角(α)保持恒定为35度,化合物(跨度)喷射角(β)保持为90度。以第五吹炼比(M)= [0.5、1、1.25、1.5和2]收集系列数据。密度比恒定为1.97,但不同于最佳形状和吹塑比为6、3、1.97和1.5。使用计算流体力学软件FLUENT®并选择标准k-ε模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号